proprty.ai logo
  • Product
    ProduktoversigtFor asset- og fund-managerenFor driftschefenFor ESG-ansvarlig
  • Pricing
  • Insights
  • About us
  • Contact
  • 
    Login
  • Get started

LOG IN
Book demo
🌐
Dansk English Deutsch
Blog
August 23, 2024

Machine Learning, Artificial Intelligence and Large Language Models

Machine Learning, Artificial Intelligence and Large Language Models

The promises of what the new LLMs can do have been many, and the idea of creating a tool that fits all problems seems more appealing than ever before. And while they have been paramount in the Machine Learning (ML) & AI landscape for the past few years, there are still many problems that LLMs can't solve.

Here, many of the more traditional ML and AI methods still come in handy. ML and AI are much more than LLMs, although the terms are used interchangeably.

Traditional ML and AI methods

Several examples of usecases exist where the more traditional ML models are still the most ideal tool to use.

Tree-based models, such as Gradient Boosted Decision Trees, generally perform better on problems with tabular data, i.e. data that can be arranged as numbers in rows and columns, than transformer based models are (the model architecture behind LLMs).

In some cases, a model needs to be 100% transparent so that the prediction that comes can be explained to the user. Examples could be why a particular person or company gets a bad credit rating, or in diagnoses and recommendations in the healthcare industry, where the explanation of this plays a key role.

This is where so-called Glass Box models such as Logistic Regression or Explainable Boosting Machine come into use, since the output from the model can be explained 100%, unlike Deep Learning (DL) models, including LLMs.

LLMs and Generative AI

When most people talk about generative AI today, they actually mean LLMs. But generative AI is a term that covers more than LLMs. Ten years ago, it was, for example. Generative Adversarial Networks (GANs), which were the hottest in generative AI. They were (and are) used to generate synthetic datasets, an area which is still in rapid development!

However, there are a wide range of challenges where LLMs are the best solution. For example, these could be text-based tasks such as chatbots, sentiment analysis, translation or summarization. The models are also far better at generalizing, where traditional ML models are often trained to solve a very specific problem.

A pursuit of method agnosticism

Although LLMs dominate the public's AI landscape, there are still a number of issues that traditional Machine Learning (ML) models are better geared to address. We're going to make use of both in proprty.ai. The main thing is that the right tools should be used to solve the problems.

At the time of writing, we are primarily dealing with regression. Our models predict residual life of building parts, as well as ongoing maintenance costs.

So while we have projects on the drawing board that take advantage of all the benefits that LLMs come with, we're mostly working with more classic ML methods right now.

We strive to create a product that makes life easier for the user. Whether that happens via programming, or with Machine Learning and LLMs, in principle does not matter as long as the product creates value.

Mikkel Jensen

Mikkel Jensen

Co-founder & CDSO

Mikkel has 6 years of experience developing ML and AI models, data infrastructure, and software across startups and larger companies.






Subscribe to our newsletter

Get insights into new features, customer cases, and news from proprty.ai, delivered straight to your inbox.

Related posts

See all posts
Securing the future of municipal buildings requires a change of starting strategy
Blog

Securing the future of municipal buildings requires a change of starting strategy

New requirements reshape municipal real estate strategy.

Read more

2024 is the year of the Asset Manager, they are the rock stars of portfolio owners
Blog

2024 is the year of the Asset Manager, they are the rock stars of portfolio owners

Asset Managers will take the lead role in 2024.

Read more


Ready to get started? Book a demo

Book demoWatch the explainer video
Product
  • Product overview
  • For operations managers
  • For asset & fund managers
  • For ESG managers
  • Pricing
  • Home
Resources
  • Insights
  • Blog
  • Customer cases
  • News
  • Privacy policy
  • Imprint
About proprty.ai
  • About us
  • Contact
  • Log in
  • Book demo
Subscribe to our newsletter

Stay up to date with how proprty.ai is evolving, and get insights into selected features, customer cases, and professional perspectives from our work with municipalities, social housing organisations, investors, and property managers.

The newsletter gives you a clear overview of what matters most and only when we have something genuinely valuable to share.

CVR: 43641298│Gammel Mønt 3A, 1117 Copenhagen K│ © 2025 proprty.ai ApS